

No. YDTEST180924 Date: 24th. Sep. 2018 Page: 1 of 7

Battery Model: LFPG12100FT (Gel,12V,100Ah)

Sample Q'ty : 1pcs

Test item : Endurance in cycles

Applicable : Capacity test : Refer to IEC60896-21; Standard Cycle test : Refer to YD/T 799-2010

Test Method : 1 Capacity test

6.11.1 The test shall be carried out with five times six cells or five times six monobloc batteries.

6.11.2 The test units shall be selected and prepared according to 5.2.

6.11.3 The test for the actual capacity Ca, at the moment of dispatch, shall be carried out at each of the following discharge rates each time with six fully charged units. These units shall not have been previously submitted to any discharge.

The capacities shall be determined with the following rates to the following end-of-discharge voltages:

C10 10h rate with current I10 to Ufinal = 1,80 Vpc (ë= 0,006)

C8 8h rate with current I8 to Ufinal = 1,75 Vpc (ë= 0,006)

C3 3h rate with current I3 to Ufinal = 1,70 Vpc (ë = 0,006)

C 1h rate with current I1 to Ufinal = 1,60 Vpc (ë= 0,01)

C0,25 0,25h rate with current I0,25 to Ufinal = 1,60 Vpc (ë= 0,01)

(where ë is the rated temperature correction factor of the capacity at the relevant rate)

6.11.4 The test shall be carried out with the units fully charged and with each unit temperature between 18 °C and 27 °C measured immediately prior the discharge.

This initial temperature q of the unit shall be used for the correction of its capacity in function of temperature.

NOTE 1 It is desirable that the initial average cell or monobloc battery temperature and the ambient temperature be as near to the reference temperature of either 20 °C or 25 °C as practically possible.

NOTE 2 For several applications the knowledge of the performance of the units under constant power discharge conditions is necessary. These performance data shall be gathered with actual discharges where the power delivered from a unit is held constant and not by means of calculation from average discharge voltage levels.

- 6.11.5 The discharge shall be started within 1 h to 24 h after termination of charge and with the discharge current ldis held constant within 1 % throughout the whole discharge duration.
- 6.11.6 The voltage measured at the terminals, including one intercell connector length, of all the units shall be either recorded automatically against time or by taking the readings manually with a voltmeter. In the latter case readings shall be made at least at 25 %, 50 % and 80 % of the calculated discharge time with: t = Crt / Irt (h)

and then at suitable time intervals, which permits the detection of the transition to the final discharge voltage Ufinal.

6.11.7 In a type test for the determination of the actual capacity Ca at the moment of dispatch with five discharge rates (this subclause), the discharge shall be terminated when the following value has been recorded from each unit:

No. YDTEST180924

Date: 24th. Sep. 2018

Page: 2 of 7

Test Method

tdisch = elapsed time of discharge of each unit, with n cells, to a final voltage of

Ufinal = n× Ufinal (V).

- 6.11.8 The six individual capacity data, normalized to 20 °C and 25 °C for each of the five discharge rates shall be reported.
- 6.11.9 In the type test for determination of the actual capacity Ca preceding or following a particular test routine, the discharge shall be terminated, if not specified otherwise, when the elapsed time of discharge tdisch of each unit with ncells to a final voltage of Ufinal = n × Ufinal (V) has been recorded.
- 6.11.10 In an acceptance or commissioning test the discharge, at one rate only, shall be terminated when one of the following values tdisch, whichever comes first, has been recorded:

tdisch = the elapsed time of discharge of the string, with ncells, to a voltage of n× Ufinal (V) or tdisch = the elapsed time when the first of the unit in the string reached a voltage of U = (Ufinal $- \times 0.2$) in volts with the value of ($\times 0.2$) as shown below, or as agreed between the battery manufacturer and the battery user. Individual unit voltages can be use d to assess variability within the lot.

Table 8 – Final voltage de-rating factor in commissioning or acceptance test

Unit voltage V × 0,2

2 1.000× 0,20V=0.200

4 1.414× 0,20V=0.282

6 1.732× 0,20V=0.346

8 2.000×0,20V=0.400

10 2.236× 0,20V=0.447

12 2.449× 0,20V=0.489

16 2.828× 0,20V=0.565

48 4.989× 0,20V=0.979

EXAMPLE: In a string of eight 12 V monobloc batteries the discharge (e.g. at the I3 rate to Ufinal 1,70 Vpc) shall be terminated when a string voltage of $48 \times 1,70$ Vpc = 81,6 V is reached or when one of the eight monobloc batteries of the string reached a unit voltage of 10,2 V - 0,489 V = 9,711 V.

- 6.11.11 The measured capacity Ca (Ah) at the initial temperature q shall be calculated as the product of the discharge current (A) and tdisch i.e. the discharge time (h).
- 6.11.12 If the initial temperature q is different from the reference temperature of either 20 °C or 25 °C, the measured capacity shall be corrected by means of the following equation to obtain the actual capacity Ca at the selected reference temperature:

Ca20 °C = C /[1+ I(q - 20)] in Ah or Ca25 °C = C /[1+I(q - 25)] in Ah

The coefficient ë shall be taken always as shown in 6.11.3 and according to the relative discharge rate.

Cycle test

7.23.3 cycle endurance test

Follow these steps to carry out the experiment.

No. YDTEST180924

Date: 24th. Sep. 2018

Page: 3 of 7

a) The test shall be carried out with six cells or three monobloc batteries.

The test units shall be selected and prepared according to 7.7.

The test units shall have, before starting the test, an actual capacity Ca of at least 100% Crt (10 h – Ufinal 1,80 Vpc at the selected reference temperature) and be fully charged.

The units shall be connected to a device whereby they undergo a series of discharge and charge cycles. In case of test equipment voltage limitations, 2 V or 4 V units can be grouped together in series to form a larger voltage string. However the number of individual cycle performance data points should be kept constant.

Each cycle shall comprise:

A discharge for 2 h with a current of I = $2.0\,110$ maintained constant within $\pm 1\,\%$ where I10 = [C10] / [10] in A and followed immediately by A charge for 22 h with a current limited to I = $2.0\,110$ and a voltage limited to the float voltage specified by the manufacturer for either 20 °C or 25 °C.

- b) The cells and monobloc batteries shall be operated at a temperature between 18 °C and 27 °C and the discharge–charge cycle routine a) and b) continued until, during a discharge of step a), a voltage of Ufinal 1,80 Vpc× n cells per string is reached in a time shorter than 2 h.
- d) The unit or string voltages and number of cycles achieved with the discharge–charge cycle routine a) and b) shall be recorded.

Technical Requirement NOTE This cycle number represents the amount of cycles which can be achieved in one single sequence without any prolonged charge or boost charge treatment and when the unit is subjected to a 24 h back-to-back sequence of a 2 h discharge to 40 % d.o.d (C10) followed by 22 h of charge and when recharged exclusively with the maximum charge voltage equivalent to the float voltage. This test is designed to more closely simulate the type of cycle service a battery experiences during constant voltage float service where no boost charge

LFPG12100FT (12v100Ah) weight 35.65KG

Capacity test 10hour rate (10A discharge to 10.80v)	10h36'54" 25°C
Capacity test 5hour rate (17A discharge to 10.80v)	5h56'42" 25℃
Capacity test 3hour rate (25A discharge to 10.80v)	3h42'22" 25℃
Capacity test 1hour rate (55A discharge to 10.80v)	1h27'40" 25℃

No. YDTEST180924

Date: 24th. Sep. 2018

Page: 4 of 7

Test Data

Cycle	Discharge time	Discharge current	Final terminal voltage	Capacity@25°C
1	2h	20A	12.130V	1 - 1
10	2h	20A	11.960V	
20	2h	20A	11.956V	/
30	2h	20A	11.942V	
40	2h	20A	11.974V	
49	2h	20A	11.995V	
50	10h24'	10A	10.8V	104Ah
51	2h	20A	12.100V	
60	2h	20A	12.030V	
70	2h	20A	12.040V	
80	2h	20A	12.010V	
90	2h	20A	12.030V	
99	2h	20A	12.020V	
100	10h52'	10A	10.8V	108.7Ah
101	2h	20A	12.110V	
110	2h	20A	11.950V	
120	2h	20A	11.980V	
130	2h	20A	11.990V	
140	2h	20A	12.020V	
149	2h	20A	12.010V	
150	10h51'	10A	10.8V	108.5Ah
151	2h	20A	12.140V	
160	2h	20A	12.060V	
170	2h	20A	12.040V	
180	2h	20A	12.050V	
190	2h	20A	12.000V	
199	2h	20A	12.050V	
200	12h05'	10A	10.8V	120.8Ah
201	2h	20A	12.120V	
210	2h	20A	12.070V	
220	2h	20A	12.040V	
230	2h	20A	12.030V	

No. YDTEST180924

Date: 24th. Sep. 2018

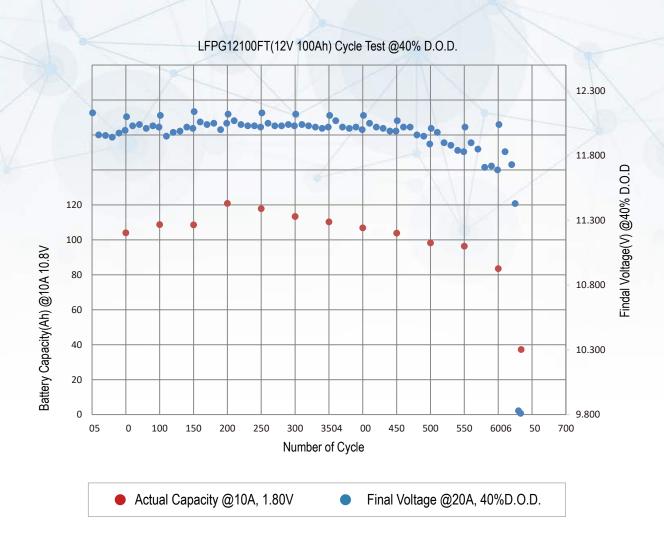
Page: 5 of 7

Test Data

Cycle	Discharge time	Discharge current	Final terminal voltage	Capacity@25°C
240	2h	20A	12.030V	Van A
249	2h	20A	12.020V	
250	11h47'	10A	10.8V	117.8Ah
251	2h	20A	12.130V	
260	2h	20A	12.050V	
270	2h	20A	12.030V	
280	2h	20A	12.030V	
290	2h	20A	12.040V	
299	2h	20A	12.030V	
300	11h20'	10A	10.8V	113.3Ah
301	2h	20A	12.120V	
310	2h	20A	12.040V	
320	2h	20A	12.030V	
330	2h	20A	12.020V	
340	2h	20A	12.010V	
349	2h	20A	12.020V	
350	11h01'	10A	10.8V	110.2Ah
351	2h	20A	12.110V	
360	2h	20A	12.070V	
370	2h	20A	12.020V	
380	2h	20A	12.010V	
390	2h	20A	12.020V	
399	2h	20A	12.000V	
400	10h41'	10A	10.8V	106.8Ah
401	2h	20A	12.110V	
410	2h	20A	12.050V	
420	2h	20A	12.020V	
430	2h	20A	12.010V	
440	2h	20A	11.990V	
449	2h	20A	11.990V	
450	10h23'	10A	10.8V	103.8Ah

No. YDTEST180924

Date: 24th. Sep. 2018


Page: 6 of 7

Test Data

Cycle	Discharge time	Discharge current	Final terminal voltage	Capacity@25°C
451	2h	20A	12.070V	1/2/
460	2h	20A	12.020V	
470	2h	20A	12.020V	/
480	2h	20A	11.960V	
490	2h	20A	11.950V	1 1 1
499	2h	20A	11.890V	
500	9h49'	10A	10.8V	98.2Ah
501	2h	20A	12.010V	
510	2h	20A	11.980V	
520	2h	20A	11.900V	
530	2h	20A	11.880V	
540	2h	20A	11.840V	
549	2h	20A	11.830V	
550	9h38'	10A	10.8V	96.3Ah
551	2h	20A	12.020V	
560	2h	20A	11.900V	
570	2h	20A	11.850V	
580	2h	20A	11.710V	
590	2h	20A	11.720V	
599	2h	20A	11.690V	
600	8h21'	10A	10.8V	83.5Ah
601	2h	20A	12.040V	
610	2h	20A	11.830V	
620	2h	20A	11.730V	
625	2h	20A	11.430V	
630	2h	20A	9.830V	
633	2h	20A	9.810V	
634	3h43'	10A	10.8V	37.2Ah

No. YDTEST180924 Date: 24th. Sep. 2018 Page: 7 of 7

Tested by: LHZ Checked by: CYH

Date: 2018/9/24